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Abstract- Kohonen’s se l f -organizing feature map
belongs to a class of unsupervised artificial neural
network commonly referred to as topographic maps.
It serves  two purposes ,  the  quantization  and dinlen-
sionality reduct ion of  data .  A short  descr ipt ion of
i t s  h is tory  and i ts  b io logical  context  Ls g iven.  We
show that  the  inherent  c lass i f icat ion propcrtim of
the  feature  map make it a  sui table  candidate  for
s o l v i n g  t h e  classifjcatjon task in p o w e r  s y s t e m  a r -
eas  Iikc load forecast ing ,  faul t  d iagnos is  and secu-
rity asscssmento

1. B1OLOGICAJ> MOTIVATION

Topographically organized neural maps, like those which
inspired Kohonen  to develop his self-organizing feature map
algorithm, have been observed in warimrs parts  of the central
nervous system,

Cells in primary sensory cortex (that p,art of cor~ex which
rcceivcs  dircc(  sensory input)  can be characterized by their
receprivc  jields. A rcccptive field of a CC1l is that p(art of the
sensory world within which an adequate slimulus causes an
excitatory or inhibitory response of the cell in question. For
instance, cells in primary visual cortex are cxciled selectively
by input to a small  p(arl of the visual field  of the animal, and
cells in the sornato-sensory cortex respond prefcrentiall  y to a
sensa(ion  fcl( on a particular p,arl of the skin.

Cortical neurons arc not arranged randomly but rather in
functional areas. At a smaller scale, within the primary
sensory and motor arcm, cells are organized in ordered spatitaJ
maps which prcscrvc the (opography of the input space to
some extent (“lopogrflphic  maps”). For ex,ample  neurons in a
parlicul{ar ,arca of the somam-sensory  cortex will correspond
10 the sensory input of neighboring fingers of the stame had.

Starling already in the early seventies [von der Malsburg,
1973;  Willshaw  and von dcr Malsburg,  1976], there have
been numcrorrs  attcmpls  to untlerskln(t  the structure and the
formation of such cortical maps by formal modeling While
their model requires the postulated existence of so-called
marker substances which guide the topographically ordered
projection, more recent ctevelopmentat  models ‘are based on
cm-related electrical activity of input to the cortex.  Linsker
[1988] proposed a Inrrlti-layered network consisting of linear
uniLs in order to model orientation seleclive  cells. His work
was subscqucnlly  revised by Miller et al., [1989] for ocukar
dominance columns and orientation columns [Miller, 1994]

and explained in terms of principal component analysis.
Niebur and Wbrgtitter,  [1994], however, have shown that
such maps can also be described in terms of very simple
geometrical constraints.

As discussed in [Ritter, 1988] for somatosensory maps and
[Obermayer,  1993] for ocular dominance and orientation
columns, the self-organizing feature map introduced in
[Kohonen, 1982] provides an elegant and comparatively
simple qualitative Inodel which explains all these features
with one mechanism.

2. A COMP[JTATIONAL MODEL FOR TOPOGRAPHIC
MAPS

KOhO1lell  [1982] proposed a formal model for the formation
and function of topographic maps which he called “topology
preserving map” and which is now known as Kohonen’s  .~elf-
orgurrizing  feature nwp. For a set of input signals, the map is
tlesigncd to achieve the following tasks  [Kohonen, 1989]:

1) Vector quantization  of the input se~
2) Dimeusionalit  y reduction of the input space,
3) Preservation of the topological order present in the

similarity relalions  of the input vectors

In the following sections its laterally connected architecture,
winner-take-all processing, and unsupervised learning
algorilhm  and the resulting properties are discussed.

2.1. Architecture - lateral fced)wck through neighborhood
reldtions

The self-organizing feature map is an array of m processing
elemenls (neurons) arranged on a lattice of arbitrary
dimension. Most applications use a two-dimensional lattice
but models where neurons are arranged on a (one-dimensional)
line or in higher-dimensional spaces can be defined. For a
given network, the input vectors x have a fixed dimension n.
The n components of the input vectors are connected to each
neuron in the lattice. A synaptic weight w~ is defined for a
com]ecIion  from tbe jth component of the input vector to the
ith neuron. Therefore, an n-dimensional vector wi of synaptic
weights is associated with each neuron i.

A neighborhood relationship is specified between the neurons
of the Kohonen network. in the biological cortex, the
connectivity of neurons dceremes with their relative distance
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In the computalirnml  model, this is behavior reproduced by
introducing interactions between neurons whose strength
decreases with their distanu.

Fig. 1 shows a 4x4 Kohonen network which maps 3-dimen-
sional input vectors to a two-dimensional map containing 16
neurons. Only neurons linked by a black line are connected,
and only the weights belonging to neurons O and 8 are
mpreseated  in this figure.

T Neighborhood of

o de, o

0 order  1

0 order,

Figure  1: Neural network architecture of the self-organizing feature nmp.
Assuming the nml SIhhkd  neuron is neuron 5, dark and lightly shaded

neurons ideriify  its first and se.ccmd-nrcler  rleigbtmrs

For the genera] case of m neurons arranged on a two-
dimcnsional  latlicc  of length m 1 and width m ~, the
connectivity is defined by the following neighborhood
relation: With each neuron k (k = O, . . . . w-1) is associated
its two-dimensional coordinate r(k) := (ki, kj),
i = O, . . . . mpl  , j = O, . . . . row-l. The distance between
neurons k and neuron 1 is then defined as a function of the
imticcs  i and j of k and 1,

dist(k, 1) = Ilr(k) - r(l)ll = f100r(ll(ki,  kj) - (Ii, lj)ll), O)

where floor(h) dcnfs(es  the kafgcst  integer lCSS or equal 10 h.
With the Ihrclidcan tlisfancc II II defined in (2)

ll(ki,kj)-(’i’j)  ll’=J(~i-’;)2  ‘(kj ‘lj)2 (2)

every neuron in Fig. 1 has at most 8 neighbors of order one
for a dislancx! <2.

The ncighborhoofl relationship can bc chosen in an ,arbitrary
way, and common ways 10 conncc(  neurons are the
‘association  of four, six or eight ncighbrrrs  for tXICh neuron. h
order 10 keep the subsequent figures simple, wc often omit
the diagonal connections and the circles denoting the neurons.

IO principle, the number of neurons is indepcodenl  of the
rlimcnsion of the input vector  and of the size of the training
set. 1 lowcvcr, a small number of neurons can form only a
small  number of clusters, each one representing a l,arge set of
input vccmrs,  which leads to a coarse discrimination of
fcalures  in the input vectors. Depending on the application,
such a coarse discrimination may not present a sufficiently
tlctailed  classification for a large training set and a ICarger
number of neurons may be required.

In biological systems, the lateral connections between
neurons implement excitatory and inhibitory links. In his
original approach, Kohonen [1982] proposed a fully laterally
connected network with distance-related strengths of synapses.
Neurons close to each other on the grid have a positive
(excitatory) coupling, whereas more distant neurons are
coupled by negati ve (inhibitory) connections.

Plotting the functional influence between neurons as a
function of the distance between them therefore yields the
familiar Mexican Hat Funcfim,  an example of which is
being shown in Fig. 2

Neuron output 4
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Figure 2: The Me-ricrw  Hal Function: a rnndel for lateral excitation and
inhibition of neurons on a one-dimensional net,

Kohoncn [1982, 1989] showed that a network with this
neighborhood function classifies input states without the need
for an error signal (which is required with supervised learning
techniques) and called it therefore the “Self-Organizing
Feature Map.” He also showed that the self-organization can
be obtained without using the full neighborhood funclion
shown in Fig. 2 but that a simpler, computationally  more
efficient neighborhood function is sufficient. It is, in fact,
possible to omit the inhibitory connections, choosing a
neighborhood function A(i, i*, f) of exponential or Gaussian
form, as in

‘(ii*’’=exp[-’’’(:zJJ*)”l ‘=10r2 ‘3)
where o(t)  = [ ‘~, O <~< 1 and t defines the (usually)
discrete iteration time. The coordinates of neuron ion the
two-dimensional grid are denoted as r(i), i* is the maximally
excited neuron and i are the neighboring neurons. This
function is shown schematically in Fig. 3.

Neurons which are connected to each ofher by strong excita-
tory connections form a functionally related neighborhood
whose size is given by the parameter a(t) in (3). This param-
eter is conventionally called the “neighborhood size” of the
neighborhood relation defined in (3). It is chosen as a decreas-
ing function of iteration time.
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Figure 3: The Gaussim Funcfim: a model for lateral excitation of neurons
on a one-dimensional net.

3.2. The self-organization ulgorithm

2,2.1. Processing - classification lhrough competition

When Kohonen introduced the network that bears his name,
the algorithm he used for the processing of the input signal
was similar to that of the logic threshold unit (see tutorial
chapter on ANN concepts) and other biologically inspired
artificial neural  networks:

In (4), n is the dimension of the input vcctms and the gain
function g(}’i)  is the winner-klke-al] function, i. e.

{
1  fori=i*y i = g(vi) = ~

elsewhere’ i = 1, . . . . m (5)

antt neuron i* is sclectcd such that its weight  vector wj* is
the most similar to the inpul  vector. Similarity is defined by
the angle between input  and weight and measured by the
seatar product. Thus

\)i* = lna X{< Wi ,X> Ii= 1,..”., /)1) (6)

where m is the number of neurons. Assuming for the
momcn( as many output classes as neurons, neuron i*
respectively output yi* is called  the winner of the
competition.

lJnsing  the parallelogram equation it can be shown that for

normalized inputs and weights, <wi , x> takes its
maximum for weight vector w i* if llWi  - X11 takes its
minimum for Wi = Wi*. As before, II II denotes the
Euclidean distance. For normalized weight vectors (6) above
and (7) below select the same winner, neuron i*. We can
therefore selecl neuron i* such that

\ll* = I1li 11(11 Wi -X11 Ii= 1, . . . . m) (7)

The two concepts of similarity for the selection of a winner
are therefore eq u i valcat for nrmnalizcd  vectors. However, the
normalization is (ml y needed in order to model the same type

of neuron m the logic threshold unit. The theory of Kohonen
networks does not require the normalization of input and
weight vectors.

2.2.2. Training - protorype generation Zhrough  unsupervised
learning

As was mentioned previously, there is no need to specify the
desired output in advance, when using the Kohonen algorithm
and the training is therefore called unsupervised or se/~-
organized. The algorithm is shown in schctnatic  form in Fig.
4. Let m be the number of neurons with weight vectors
w~c 91n, l<k<nr  anti X= {x~ ‘Xnlx  t r a i n i n g
vector) the training set. At each step z of the learning phase,
a vector x, drawn randomly from the training set ~, is
presented M input to the network.

The neuron i* whose weight vector is closest (o the input
vector x in the sense of the Euclidean distance, is selected.
The weight vector wi* of this neuron is then adapted,
becoming closer to the input vector according to the
a(k~ptation  rule given in (8) below. The weight vectors of the
neighboring neurons are also changed, by an amount which
decreases with increasing distance to the winning weight
vector. More precisely, at time [+1, the component j of
weight vector wi is modified by adding

A Wij = Wij(t+l)  - Wij  (t)
(8)= ~(t)  A(i,  i*,f) (xj - wij (t))

The neighborhood function A of the adaptation rule, defined
in 3, and the learning rate q have to be chosen such that the
weight vectors converge to an equilibrium after a sufticientl  y
large number of input vectors from the training set X have
been presented. This requires that the learning rate q(t) decays
with time.

Theoretical results concerning convergence and stability of
the algorithm by Ritter  and Schulten,  [1988], suggest the
following choice for rt(t)

q(f) = t ‘awith O<U<l (9)

and A(i, i*,f) as defined in (3), see [Erwin cr al., 1992a, b]. A
summary of the algorithm is listed in the following Fig. 4.

Since input vector x is drawn randomly from the training set
containing a finite number of vectors (see step 2 in Fig. 4),
any input vector may be’chosen several times,

The c–criterion (step 6 in Fig. 4) is very time consuming
for l,arge networks and high-dimensional input spaces.
Usually this criterion is therefore not applied and the
simulation is instead halted after a pre-determined,  large
number of iterations. Furthermore, since A(i, i*,t) decays
exponentially with the distance between neurons, the change
of the weights of neurons far away from the winner is
negligible, Therefore A(i, i*,t) is truncated, and only neurons
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whose distance to the winner is smaller than the truncation
threshold are updated in step 4.

After training, input vectors which are close (in the sense of
the Euclidean distance) in the input space will stimulate
neurons which are close to each other on the lattice. Some
neurons may not be stimulated by any input vector.
Grouping together all neurons stimulated by the same group
of input vectors leads to the concept of neuron clusters
representing classes of input vcc(ors. Obviously, the number
of such clusters can be smaller than m,

1) t :=0: initialize wij randomly for i=l, . . ..m.
j= 17 . . ..nj

2) Choose  input vectorx=  Xrandomly inthc training set

3) Dctcrmine theneuron i*suchtiat  itsweightvectorwi*
is the closest to the input vector

llW’i*(l)-xll=lnin  llWi(t)  -XII for all i

4) [Jpdate the weight vectors wi, i = 1,...,  m:

Wi(l+l) := wi(t) + ~(t) A(i, i*, I) (X - wi(t))

5) Increment thetimcl:=l+l

5) if forseveml  time intervals
r

$j&ij12 > E fhr31
i=]

go to 2 else STOP

Figure 4: Training algorithnl of tile self-organizing feature map.

3.3.3. Sclforganization  as HeM>icin learning

Kohonen’s  learning rule (8) obeys Hebb’s postulated
generalized learning principle. For convenience let us repeat
this princip]c  introduced in the previous tutorial chapter:

For the weight vector w of an artificial neuron, given input
vector  x and ou(put  y, synaptic learning can be expressed as
the changes in the synaptic strength. These changes depend
on the learning faclor  cmrclating  output and input and the
forgeltingfilctor  co r re la t ing  output and  we igh t :

Aw=qyx-ayw=cxy  ((q/a)x -w) (lo)

with q, a > 0

With the choice of equal learning and forgetting rates a = q,
and a winner-take-atl unit with neighborhood zero, the neuron
output y will bc either zero or one, and liebb’s  rule is
satisfied. The neighborhood function however can be
intcrprcmd  as white  noise, which corrup~s  the output signal
with norm,ally distributed probability.

3.3,4. Selj-organization  by la(eralfeedback

We now discuss briefly alternatives to the update rule, step 3
in Fig, 4. The Kohonen algorithm requires that the distance
between the input vector and all the weight vectors is
determined at every iteration step. While this leads to a very
efficient classification algorithm (see below), the
implementation of this comparison in the biological brain, i.
e. biological “hardware”, may not be simple. The problematic
step is the comparison of the outputs of all units for the
selection of the maximum, This is a non-local process which
requires information of the state of all units, to be monitored
by a “master” unit.

Therefore, alternative updating schem~s  have been developed
which do not require the explicit selection of a “winner”
(vector with smatlest  distance to the input vector). In such
schemes, the most responsive neuron is determined by a
dynamical process leading to the formation of “activity
bubbles” which converge into stable focused patches of
activated neurons [Kohonen, 1989; Lehmann, 1993; Sirosh
and Miikulainen,  in press]  An electronic implementation of
this algorithm in analog VL.SI technology has been developed
by Vittoz et al, [1989].

3. CLASSIFICATION EXAMPLES OF RANDOMLY
DISTRIBUTED INPUT VECTORS

The following section shows an illustration of the
classification features of the Kohonen network. In the special
cases where the input vector  has the dimension 2 or 3, it is
easy to represent this classification graphically, see also
[Kohonen, 1989].

The feature map illustrated in Figs. 5, 6, and 7 consists of
10x 10 neurons. Each neuron is placed at the coordinates
defined by the first and second component of its two-
dimensionat weight veclor.  We assume that the input vectys
arc uniformly distributed on the unit square,

Fig. 5 shows the initialization of the weight vectors which
are randomly distributed in the input square but which do not
exhibit any organizational structure. Neighboring neurons are
randomly located on the square. Fig. 6 shows the state of the
network after 200 input vectors randomly drawn from the unit
squ,are with uniform probability have been presented to the
net work.

The map in Fig. 6 is already somewhat organized:
neighboring neurons on the grid are usually located close to
each other in the input space. But the organization is not
perfect. The learning parameters are such that the
neighborhood order is still 2. If in the next step, the input
vector x is situated at the coordinates marked by the black
circle, the winning neuron marked by the shaded circuit and
all its neighbors of order one marked by the white circle and
two (not marked in this figure 5) are updated simultaneously.
Their coordinates will change in direction to the x.
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represerrti rrg unifornd  y distributed t wm
rtimemiorral  input vectors. In the initial stale,

weight vector  con]pcrne.rrLs  are. randomly
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Fig. 6 organization of tbe Kobonen  netwnrk
after 200 training steps. The black dot denotes
position of input M step 201. ‘fhe shaded  neuron

will be Ille winner of the selection, the while
circle denote  direct neighbors .

Fig. 7 Organization of the Kobonen  network
after 1000 training steps.  The weight vectors are

equally distributed in the input space. Their
distribution reflecLs the uniform distribution of the

input vectors shown w shaded mark~

L

Fig. 8 Organimtion after 1000 integrations of a
10xI O Kohmen  I]etwork  representing Gaussiarr-

distributed two-din tensional input vectors of
means (O, 1). Ihe weight veclors  are densely

distributed at the nwans. Illeir rtislrihrtimr
reflecLs  the Gaussian  disUibutior] of l]le input

vectors sliown as shaded marks

Fig. 9 Tessellation of ttre input space  by the Fig. 10 Orgarti=tion  of a 4x30 Kohorren network
Krd)onen network. Not e, that densely populated witli a b yperbol i call y decreasing neigbbnrhrrrsi,

areas are represented by a larger number of representing’ uniforrnl y distributed two-
neumrrs with a sntaller class size. rtirnemsirrrurl  irrfml  vectors. after lfKX3 training

steps, White circles highlight areas where the
map is distorted. Shaded circles denote neurons
wlrich violate tt!e topological ordering principle.
The ellipse shows one region of the irrpm space
where the network presenLs a distorted mapping

of the input space.

Fig. 5- 10 were generated using an irnfrlernenta(irrn  of tfre Kohonen network developer at the Lotroratoire de Mtcrtilectronique  of the Ecole
Polytecltnique  F&dLrde de Lausmne  [Oenmtines,  1991].

and le,arning  rate, Fig. 7 shows the evolu(ion after 1000
The change is proportional to their Euclidean distance to x, training steps when the network has converged to a stationary
to tht! degree of their neighborhood to the winner and the state. The neighborhood order has bem already decreased to
learning rate, zero, and in the last 300 steps only the winner was updated.

The neurons are by now WC1l organized and almost uniformly
A more regular pa[tern is obtained for larger numbers of distributed in the input space, thus representing the same
training steps and a further decreasing neighborhood function distribution as the input vectors. Two input vectors close to
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each other in the input space will be classified by either the
same neuron or by two neighboring neurons.

Fig. 8 represents the organization of the map for Gaussian
distributed input vecmrs and Fig. 9 represents an
approximation of the Voronoi  tessellation obtained with the
Kohonen map. Note that neighboring areas are represented by
neighboring neurons.

An interesting example is shown in Fig, 10. Instead of a
quadratic grid, neurons are placed on a rcctangul,ar  grid. The
size of the neighborhood function A further decreases with
l/L instead of exponential] y. We can observe two phenomena.

First, the network assumes the form of a Peano curve. Its
weight vectors still represent a quantization  according to the
distribution of the input vectors. Second, the topological
representation of the input space is distorted in areas denoled
by white circles. For example the dark shaded and the light
shaded neuron arc direct neighbors on the grid, However
neighboring input vectors drawn from the dotted region will
most likely be classified by either the dark shaded neuron or a
fourth order neighbor shown by a striped circle instead of its
direct neighbor,

For the one-dimensional case, Erwin ef al., [1991] have
shown that for a Gaussian neighborhood function these
topological defects can not occur.

An example with a higher-dimensional input sp~cc is shown
in Fig. 11.

Figure 11: 4x4 Kohonen  network representing unifumly  diskihuted :hree-
dimensiorml input vectors,

A two-dimensional 4x4 Kohonen  network was trained with a
total of SO(t three-dimensional input vectors uniformly
(tistribulcd  over the volume of a three-dimensional unit cube.

Ilc three-dimensional weight vectors should bc distributed
rcgul,arly  in the cube. Due to the small size of the network,
however, the comer neurons classify the extreme cases of
vectors drawn from near the edges of the cube, although these
input vectors may not be close in the sense of the Euclidean
distance. This is illustrated at the example of two neurons
(marked by a black and a white circle, respectively), The

input vectors classified by these neurons are shown m black
dots and it can be seen that they form two clouds adjacent to
the two comers next to the corresponding neuron.

4. STATISTICAL PROPERTIES OF THE SELF-
ORGANIZING FEATURE MAP

At a given time t, the state of the feature map consisting of
m neurons is defined by the weight vectors w 1, w2, . . . . wln
~ fin. Note that most of the results listed below are proven
only for n = 1,

Let us assume that the input vectors x = ‘Xn are distributed
in the input space according to a given probability
distribution P(x), In the adaptation rule defined by (8), the
value of weight vector w(f+ 1 ) at time r+ 1 depends on the
weight veclor  w(1) at time I and on the input vector x
presented at time r+ 1. Since x is drawn randomly from the
distribution P(x), the state W of the feature map evolves
stochastically  in time, Since the probability of the state at
time f +1 depends only on the state at time t, the state is a
Markov process. For discrete time steps, the sequence W(l) of
feature map states forms a Markov chain.

Two questions have to bc studied in the context of feature
maps, first the convergence of the algorithm towards a stable
state, second the properties of the map with respect to the
preservation of the topology of the input space.

The first question, namely under which conditions for a
probability distribution P(x), a learning rate q(t)  and a
neighborhood function A(i, i*,l) the Markov chain will
converge to a stable equilibrium point, was addressed by
several re.searcherx,

In the c&se  of a one-dimensionat red input space, Cottrell  and
Fort (1986) showed that the Markov chain converges almost
surely to a unique stable equilibrium state if

x is uniformly ctistributcd  in 91n

and

{
1  forli–i*l<2A(i, i*, t):= 0 elsewhere (11)

and the learning rate fulfills the so-called “Robbins-Monroe”
conditions:

.
~q(f)=+- aw.1 ~q(oz <- (12)
t=o t=o

The conditions for convergence for general continuous
distributions were weakened by Ritter  [1988] who showed
that the following condition on the learning rate is sufficient
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~q(t)df = + ~ ad ?l(o+o for t-+~ (13)
o

Note that the learning rate rI (1) defined in (9) fulfills these
conditions. For the one-dimensional case Ritter [1991]
showed further that the probability distribution of the weight
vectors equals P(x)213 -y(lll) where y(m) goes to zero for
large nc~s, that is, for m +m.  ‘

Introducing a modification of the adapkltion  step, Yang and
Dillon [1992] proved the convergence of the modified
algorithm for the two-dimensional ca!!e.

For higher-dimensional input spaces and continuous
probability distributions, Erwin et al. [1992a, b] proved the
following negalive  result: There is no energy function whose
minima corresponds to the stationary states of the system,
because in this case the forces acting on the weights are not
conservative. ‘his means that in contrast to Hopfiekl nets,
the stalion,ary state cannot be found through optimization of a
cost function. Energy functions can only be delincd  locally
for each individual neuron [TolaI,  1990].

in the cme of n-dimension,at  discrete probability distributions,
however, Ritter [1988] demonstrated the existence of a non-
differcutiable  energy function bounded from below. This
function may have several local minima. As in the case of
simulated annealing techniques, the slow stochastic updating
of the weight vectors, i. e. the slow decrease of the learning
rate, facilitates the escape from these local minima. Ruzicka
[1993] gives conditions on the learning rate and the
neighborhood function for which the feature map converges
to a stationary point. This is an important result for technical
applications where the training set is often finite and its
probability distribution is therefore always discrete. As a
consequence, the convergence of the algorithm is guaranteed.

The second question to be discussed is the preservation of
topologically  ordered stales. In the one-dimensional case, if
we number three neurons i, j, and k according to their
position m the “lattice,” the triple of corresponding weights
wi,, Wj} and Wk is called topological y ordered if

l}Vi - Wjl<l Wi-W~ I f o r Ii - jl < Ii - kl 04)

Cotmell and Fort [1986] showed that the topologically  ordered
s!ate of the ch,ain  is absorbing. In other words, once the triple
of wciglms  is ordered, this topological order of wi and Wj will
not bc destroyed. This result wm extended by [Erwin er al.,
1992a, b] for OUe-dilneUSiOIlal  monotonically decreasing
convex neighborhood functions as, e. g., the Gaussian
function  and the choice of k = 2 in (3). They showed that for
such neighborhood functions, the topologically  ordered states
are the only stationary states of the system and that
furthermore, there may exist meta-stable  states for non-

convex neighborhood functions. These meta-stable  states do
not respect the topological order of the map. An example for
this type of behavior was illustrated in Fig. 10.

There is no straightforward definition of distortion in higher
dimensions which would correspond to (14) in the one-
dimensional case. A heuristic distortion measure was
introduced by Bauer and Pawelzik [19921 who then showed
experimentally that the distortion error can be reduced by
increasing  the dimension of the neuron lattice. However, one
of the major advantages of the self-organizing feature map
techttique  over conventional quantization  algorithms in the
context of power system security analysis is the possibility
of direct visualization of the system state on a graphical
display, see also 8.1.2. Since this is not possible for maps of
dimension higher than two, the method proposed by Bauer
and Pawelzik cannot make usc of this desirable property of
the Kohonen network.

Kohoncu [1989], Ritter and Schulten  [1988] and Oberrnayer
[1993] observed that the coordinates of the two-dimensional
lattice of the self-organizing map are organized according to
those variables of the input space for which the variances are
maximal, This is a very important feature for our application
of the feature maps to static line overload assessment and
prediction. When choosing the line loads as input vector
components, the feature map organizes itself according to line
loads varying between outage and overload.

A summary of the discussed results as well as further
references to theoretical work is given in [Cottrell  et al.,
]994].

5. APPI.ICATION OF SELF-ORGANIZING FEATLJRE
MAPS IN POWER SYSTEMS

In technical arem Kohoucn  networks have successfully been
applied to solve the inverse kinematic problem in robotics
[Ritter  et al, 1991]. Another promising application of self-
organizing feature maps is the representation in two
dimensions of high-dimensional input vectors for the design
of integrated circuits [Tryba, 1992]. An application for the
optimization of NP-cmnplete  combinatorial problems like
the Traveling Salesperson Problem was discussed by Fort
[1988].

Applications for electric power systems include static security
assessment [Niebur  and C1ermond, 1991, 1992; E1-Sharkawai
and Atteri, 1993], steady state stability [Mori, 1991bl, fault
diagnosis [Lubkeman el al., 19911, transformer fault
diagnosis [Baumann  et al,, 1991], and load forecasting, [Hsu
and Y:ing, 1991; Germond  ef al., 1992].

5.1. Trun.@tner  fuult diugnosis

Transformer fault diagnosis is a pattern recognition and
classification task, which has successfully been solved with
the self-organizing feature map. Obtained by impulse tests,
the transfortners’  tmnsadmittance  (transfer function) is a good
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indicator for the fault status of the transfcmner.  The sampled
magnitudes of the transadmiuances of transfonnef faults are
presented as input vectors to the Kohonen net, The phase of
the transadmittance  was often corrupted by noise and was
therefore discarded.. An example for a discretized  transfer
function is shown in Fig. 12. [Baumann,  T. et al. [1991]
work with simulated training and test data.

,,
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Fig. 12 Discretizaticsrs  of a transfer function into an input vedor  of
din)emsion  6.

Fig. 13 illustrates how the neurons of an 8x8 map respond to
different sbapcs  of transfer functions. Note for instance, how
fhc weight vectors of neurons in the second row correspond
slightly varying input features where the transfer function,
has a pronounced maximum in class 16. The shape of the
function will gradually ftaltcn and hcccnne monotonously
dccrcming  for class 21. Notice also, how the direct neighbors
of neuron 36 all show a function whose maximuln  is
obtained at the first discretization. Different types of
fransformcr  fauns arc classified by different neurons on the
map.

Kk- ttlFfllFeatureMaps  ~-

Fig. 13 Organization of a 8x8 Kohonen map fm transfor[ner  fault
diagnmis,  (adapted  fron] [Baun]arrn,  Tsclwdi  and Gernmnd,.  1991]; figure

provided try courtesy of the aulhrrrs)

5.2. L.md forccmting

The task of load forecasting consists of two steps,  firstly the
analysis of the k>ad data with respect quality of data and with
respect to different consumer behavior depending on seasons,
weekdays nnd holidays; secondly the estimation of the load to
be for’ecastcd based on  previously experienced load demands.
lhe self-organizing feature map has successfully solved the
data analysis task by creating clmses  of load patterns  which
are averages of several similar load patterns. Choosing the 24

hourly loads, next days peak load and 4 different day types as
inputs to the neural net, [Gennond  et al., 1991] show how a
10x 10 Kohonen network maps similar load data onto
neighboring classes on the map shown in Fig. 14.

Sunday
Monday 1 Saturday

Summer neuron

Spring and Fall neuron
Winter neuron
In!emeuron

Fig. 13 Organization of a lOxlO Kohonen map for load forecast-
ing, (rrdapted  from [Germond  et rd.. 1992]; figure provided by

courtesy of the aultmrs).

Notice tht the pre-domin,ant  organization of the map is due
to different day types which are mapped to different clusters.
%asonal changes affect the organization inside the clusters
only.

S.3. Power System Securi!y Assessment

The Kohonen network for power system security analysis has
been studied by Niebur  and Germond, [1991, 1992]. The
quantizmion  feature of the Kohoncn  map is illustrated in Fig.
14. The cube shown in this figure corresponds to the safe part
of the linear operating space of a 3-bus  3 line power system
introduced in the previous chapter, [Nicbur,  1996]. The axes
of the cube are labeled by the line powers, pab, par, pbe  The
surfaces of the cube are defined by the three active transfer
limits of the three lines.

The self-organizing feature map quantizes the operating space
into safe, critical and unsafe regions, as shown in Fig. 14. In
general the security classes are not given by cubes but by a
more general three-dimensional tessellation, The weight
vectors of the neurons represent typical operating states
which can be analyzed off-line either statistically or with
conventional power system analysis tools. In the ideal case,
secure and critical states are classified by the neurons in the
center of the grid, and unsecure states will be classified by the
neurons at the border of the grid.  Tle inner neurons will give
quite precise quantitative infonna(ion  on the vulnerability of
the system state with respect to security limit violations. The
neurons at the border will give less precise information about
the insecure operating states lying far away from the secure
region. However, for these inadmissible operating points,
remedial action should always been taken.

The second important feature of the Kohonen map is the
preservation of the topology of the input space. In other
words, input vectors close in the input space should be
classified by neurons close to each other on the grid.

—
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Fig. 15 Quantizdion  of the operating space with the self-organizing feature
map. The shaded cubes represent classes of operating prri rrts  represented

by the weight vectors of rhe neural net.

Since the mapping is from a high-dimensional space to a
two-dimensional lattice, only an approximation of this
topology preservation can be achieved, except for the case in
which the input vectors lie on a two-dimensional m,anifold of
the n-dimensional input space. Assuming the preservation is
sufficiently good, the features of the classes represented by
the neuron can then be displayed in two dimensions, as is
demonstrated in Fig. 16.

Cluster

o
0
0
@
Q
@
o

Secure, power similar sia for
all Iinw

Secure, power bc small

Secure, power ac  small

Critical for line ab, pnwer  bc sum]]

Critical for line ab

Insecure, limit exceeded for line ab

Insecure. other cases

FJg. 16: Feawre map of securily  regions presen[ecl  in Fig. 15.

An efficicn( implementation of Kohonen  networks on
specialinxl hardware for power systems static security is
discussed by Cornu et al., [1991].

6. CONCLLJS1ON

In summary, the Kohonen  network classifies the input
vectors with respect to the distance between input vector and
the weight vectors of the neural net. Each weight vector
therefore represents a Cerklin  number of input vectors and
organizes the input space based on the probability
distribution of the input data. The training algorithm
quantifies the input pattern space consisting of the input
vectors into at most  m classes and computes the weight
vector-s as representative elements of these classes. The
neurons on the 2-ttimensional  map are organized accortting  to
those components of the input vectors having the largest
variance. The map therefore provides a feature selection in
addition m the data quantizrrtion.

The following properties of the self-organizing feature map
are of major itnpmtance  for technical application:

● Quantization  of the input space.
● Robusmess  towards bad or missinr?  data.
● Dirnensionality reduction of the o~rating vector.
● Topology preservation of the input space structure.

In addition to the presented applications to power systems,
feature maps have a great potential in the area of monitoring.
The two-dimensional topological representation of the
operating space provides a global qtratitative  picture of the
instantaneous situation to be monitored. This feature is not
currently available in power system control centers. The
s[ochasticrdly  evolving operating point can be monitored on a
computer screen, and the direction of the trajectory of the
operating point indicates whether the power system or ~wer
plmrt  state moves out of the secure area and which constraints
are most likely going to be violated.
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w(1 +1)= w(l) - q(f) grad 13(w(l))

(14)
= w(l)+ ll(Oi(Y~(w(0)-  Y&e, ) xv

~=]

So far wc have rcplaccd  the inversion of the pseudo-inverse
by an iterative procedure. This procedure slill  needs the
knowledge over the whole training set.

l~owcvcr instead of minimizing the error globally we can
now try to minimize the error loeall y by random] y taking one

training example (x~, y~arget) at a lime

W([ + 1) = w(f)+ rl(o(y~(w(l))  – J&e,) xl”
(15)

This stochastic updating or learning rule is commonly
referred to as the LMS rule, the Widrow-HofJ  rule, or the
del[a rule. 1[ is one of the earliest adaptive “neural units,
called adapt ive lines r unit or ADALINE and was used for
adaptive control, [Widrow and Hoff, 1960].

The itcralivc  process converges stochaslically  to the
minimum of the error function, if the so-called “Robbins-
Mrmro” conditions hold for the learning rate ~, [Duds and
Hart, 1972]

00

~q(f)=+=’ ad ~rl(r)z < m (16)
1=0 1=0

Aldlough  only applicable to linearly separable lc,arning tasks,
sce remarks 7.2.3, the delta rule fulfills several of the
biological paradigms. It is computalionally  simple, robust
with respect to noisy input data as well as numerical
rounding errors and it is a local adnptrttion  scheme learning
one example at a time.

It further obeys a generalization of IIebb’s learning principle
(8). For a fixed input and target output, the weight changes
dcpcncl on two terms only, the correlation of input  x and
calculated output y , and a constant stimulus, the product of
input and target output,

lhcre  are other supervised lcarniag  rules based on Hebb’s
principle like the pcrccptron rule and the generalized delta
rule, introduced in d]c next tutorial chapter. other types of
neural networks trained with a different type of supervised
learning like the Functional-1.ink Net are discussed in [Pao,
]9g9].

7,2.4. Unsupervised learning - learning for data
reduclion

In unsupcrvisrxt  learning the input vectors of the training set
are given, but the corresponding t,arget outputs are not

specified. Unsupervised neural nets fall into the same class of
tools as statistical non-parametric data analysis, clustering
algorithms and encoding or decoding techniques,

Their main goal cousis~s in data reduction. The reduction of
the da~? set of input vectors ean be achieved in two different
ways: either by reducing the dimensionrllity  of the input
vector, or by reducing the number of input vectors.

The simplest neural network for unsupervised learning
consists of a layer of feed-forward winner-take-all units. For
each input vector only one such unit will respond, namely
the unit characterized by the maximum output, respectively
minimum distance, for this input vector x. The units of the
network are thus competing for selection. Only the weights
of the winner will be adapted. All input vectors responding to
the same unit are said to forma CIMS and the weight vector of
this unit is called the class “prototype.” Here, the gain
function is defined to yield one for the maximum respectively
minimum output, and zero otherwise,

“Winner-kWe-all” units are related to “grandmother cells”
bwause they are responsible for selecting one specific feature,
e. g. the feature presenting the stereotypical grandmother.
Note that this representation is not robust because when one
unit is removed (or one cell dies in a biological brain), all
information concerning the corresponding class would bc
lost.

A solution to this dilemma is proposed by Kohonen’s  self
organizing feature map where (ideally) neighboring neurons
cl&ssify  neighboring features and thus the loss in one neurcin
will result in a decrease of accuracy but not in a complete
loss of information.

Let us briefly introduce the main concepts used in some types
of unsupervised networks. For more detailed information see
{Krogh et al., 1991; Haykin, 1995]. Figs. 10, 11 and 12
show schematically how the data reduction of randomly
distributed data is achieved using 3 different types of
unsupervised networlw.

The first unsupervised approach for the reduction of the
dimension of the input vector falls in the class of subspace
techniques where the input vector is projected on a linear
subspace  presenting the most salient features. Statistical
principal component analysis chooses the subspaee spanned
by the eigenvecmrs  of the correlation matrix of the input
vector. The standard deviation of the input vectors take their
maximal and minimal values along the eigenvecmrs
corresponding to maximal and minimal eigenvalues.  A
simple example is shown in Fig. 10 where the data variation
along the horizontal axes is more prominent than the one
along the verlical axes.

A non-competitive unsupervised network for principal
component analysis based on Hebb’s  learning rule was
proposed by Oja [1989] and generalized by Sanger,  [1989];

. .
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for details and rcfercnees  to this work see also [Haykin et al.,
1995].
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Fig. 10 Data projection oato a one-dimensional byperplmre.  Each data point
will be represented by ils Iower-dimerrsicrnirl  projection onto tile straight

line. The sbarled  circle denotes a new input vector for wbicb tbe projection
exisLs,  a}dIorrgb tbe chssification  error Wi]i be kge.

Theseccrnd  unsupcrvise(  lapproach  forthereduclion  of the
nunlber  of input vectors is based on clustering techniques. In
order to reduce this number, the neural net categorizes the
training vecmrs into classes or clusters based on the concept
of similarity introduce in section 6. For the examples we will
use the Euc] idcan distance bet wecn two vectors as a meawre
of simikarily.

In classical clustering techniques, such as the ISO(lata
algorithm, [Duds and IIart, 1973], clusters are formed by
computing the distance bctwccn an input vector and already
cxistingcluslcrs.  Ifthedistancc  between the input vector anti
the reference vector of an existing cluster is smaller than a
previously defined threshold, the new input vector is grouped
with this cluster; otherwise, a new cluster is formed.
Functional y, a spherical neighborhood is formed around the
reference veclor of each ncw cl ustcr. Note that the dhrneter  of
the sphere is prcxlctermincd,  whereas the number of clusters is
not. An example of this type of clustering is presentcfl  in
Fig. 11. A similar objective is achieved by the Adaptive
Resrrnancc  “Ihory (ART) networks [Carpenter and Cirossberg,
1987].

Fw. 11 Clustering of data into a variable number of classes of fixerf
dianwter.  lle center’ of the circles, nol presented in tl]is figure. present tbe
class prototypes. Ihe sbadtxl circle denotes a new input vector  wbicb dcm

not foil into any of tbe trained c]axses.

In vector quantimtion  techniques based on the LB(I algorithm
[1.inde er al., 1980] or the k-means clustering, like the
Kohoncn nctwrrrk, [Krrhoncn, 1989] , the maximal number
of clusters is determined by the number of neurons in the
map. lle weight vectors arc the reference vectors or
prototypes of the class. On the other hand, the distance
around the reference vector of a cluster is not predetermined
and the region is, in general, not spherical. Instead, the
clusters are large in the regions where the density of
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probability of the input vectors is small, and vice-versa, m
shown in Fig. 12.

Fig. 12 Tessellation of data into a fixed number of classes of variable
diameler.  lle striped circles, represent the class prototype. The shaded
circle denotes a new input vector wbidi  does falls into one of tbe trained

classes although the classification error will be large.

In the case of simple vector quantization,  that is for a
Kohonen network with winner-take-all units and no neighbor
stimulation, the network minimizes the a average distortion
error between the input vectors and their reference vector, The
regions itself correspond (o the Vorcmoi tessellation, and
boundaries of the regions around a cluster are hypcrplanes,.
More details will be presented in the chapter on Kohonen
networks. Important results and references can be found in
[Rittcr  el al., 1992].

7.3 Purpose of truining  in power systems

Let us illustrate the concepts of supervised and unsupervised
learning for a very simple power system shown in Fig. 13,
consisting of two generation busses a, b, one load bus, c ,
and three lines ab, ac, bc, whose active power flows Pab, Pac.
and p/jc are limited by the maximal active line powers, i. e.
Pab max! Pac max and Pbc max.

Generationpa Generation pb

w

Pal>
Bus a hrs b

ParY PtK

Bu< C

Load /Sc

Fig. 13 A 3-bus-3-line linear power system model.

The operating vector can be chosen to consist of the active
T In this case the secure operatingline powers (pflb,  pat, p/)C)  .

space is defined by a paralielepiped  whose boundaries are
determined by Pab Inax, P(1C Inax and p/jc mu, see W. 14.
For simplicity we will throughout this work refer to this
p,arallcIepiped  as the security “cube”. Operating poin~s  inside
the shaded cube are secure, points inside but at the border are
critical and operating point outside the shaded cube are
unsecure  because they violate at least one constraint on the
maximum admissible line powers,

This example is bad on several simplifications. Only active
powers have been considered, In the general ease the cube hm
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to be replaced by a non-linear manifold. Furthermore, not all
vectors of the three-dimensional power system operating
space shown in Fig. 14 represent feasible operating states,
since Vohage-VAr  constraints and Kirchhoft% laws apply for
each bus and each line. Nevertheless, the example illustrates
conveniently the differences between supervised and
unsupervised learning.

Pllc  mm

/

Secure ~ Critical

Par
Pal, rnax

Fig. 14 TIIe operating space of the 3-bus-3-line. linear power system model,

Supervised training approximates the boundaries of the
operating space for the training set and interpolates in
between known data points, It basically constructs sep,amting
hypcrplanes  (manifolds in the non-] ine.ar case) corresponding
to the surfaces of the shaded secure cube in Fig. 14. An
example for this tcchniquc  as well as several enhancements
arc discussed in [E1-Sharkawi el al., 1991].

I Iowcver,  because in the general case the dimension of the
operating space is very high (in the order of 500 for a
medium siz,ctl  power syslcm at the transmission level), it is
not feasible to generate  a SCL of operating points which is
densely distributed in the opcraling space and to analyze the
operating points with multiple contingency analysis off-line.
la order 10 ovcrcmne this “curse of dimensioaali(y”,
un.rupervisc(i  learning lackles  the dimensiona]ity  problem
lirsl  based on two different approaches

a) Subspacc techniques
b) Quantization  Icchniqucs.

‘l’he simplest subspaet’ ff’chniquc  is the conventional
contingency mnking  techniques. If for example the outage of
line ah is sclcctcd  as the mosl  important contingency, the
operating space of the linear model is projecled  to a two-
tlimensirmal  subspacc as illustrated in Fig. 15.

Pbc max

❑ Secure

❑ Mid

❑ Insecure

Fig. 15 I,illtitalion uf lt,e nundwr of contingencies.

Pbc
A hwcure

I CNtical

Fig. 16 Reduction of the dimension of the operating vector.

Conventional load flow analysis examines the projection of
the base case onto this subspace. Supervised techniques are
also appiied  to construct the boundaries of the projected
reduced, security cube, see E1-Sharkawi et al., 1991].

Fig. 16 shows an more general example of the reduction of
the operating space by a lower-dimensional manifold,
Depending on the projection used for reduction, the manifold
may be a linear or even orhtogonal  subspace.

In [ Weerasooriya and E1-Sharkawi,  1991] the principal
component analysis method (also called Karhunen-Lobe
expansion) is used to reduce the dimensionality  of the
tmining  vectors and construct the eigenspace corresponding to
the most significant components of the input vector. The
researchers implemented their approach in a conventional
algorithmic manner instead of using Oja’s and Sanger’s neural
net approach.The second class of unsupervised approaches
encountered in power system security assessment are
quuntization techniques. Fig. 17 shows an example of the
quantization  of the operating space into classes of typical
states. Depending on the distance measure used for
classification, classes may be hyperboles, spheres or in the
case of the self-organizing feature map, of a more general
form because of the arrangement of neurons on a grid. The
classes usually do not divide the cube crisply in secure and
insecure areas, but may contain critically high loaded as WCII
M slightly overloaded cases.

Plx
4 tmecure

Ph max

Secure

Par max

Critical

Figure 17: Quantization of the operating space.

The two different clustering approaches discussed in section
7.3 have been applied to security assessment.
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In the case of a small space station transmission system,
Sobajic et al. [1990] quantize the operating space into a
variable number of hypersphercs  of fixed radius using an
unsupervised ART2-like  ANN algorithm.

la [Niebur and Gennond,  1991] Kohonen’s  self-organizing
feature map is used for the quanlizalitm  of the operating
space, ‘Me maximal number of classes is given by the
number of neurons whose weight vector represents typical
operating stales.  The size of each class depends on the density
of the probability distribution of the training vectors. The
operating space is represenmd  on the two-dimensional feahtre
map by secure and insecure regions. This case will be
discussed in more detail in the following chapter.

7.4 Comparison of supervised find unsupervised leurning

Although  usually discussed on equal terms, there is an
important difference between supervised and unsupervised
learning. [Jnsupcrviscd ltxarning  helps to organize complex
fcahrrcs  inm classes whereas supervised le,arning will then
txlculate  follow-up features for specific classes.

lJnsupcrvised  networks ean therefore be viewed m a data pre-
processing step which reduces fhc size of the data set before
lc,arning the da[a’s chamcleristics  with supervised learning.
‘Jlc  Functional Link Net (FLN) is often  used in combination
with the ART2 network [Sobajic  and Pao, 1988]. Other
ANNs combining an unsupervised and a supervised step are
the Counter-Pro~~ag[ltion Ne(work  (CPN) [Hecht-Nielsen,
1988], and the Radio! Basis Functions Net work (RBF)
[Moody and D,arktm, 1989]. The CPN combines a Kohonen
map layer wilh  a feed forward layer.  In the case of the RBF,
clustering can bc achieved by any unsupervised learning or
the k-means algorithm, and the neurons of the hidden layer
arc represcntccl  by these means. The ,architecture  of the
supervised part is a line,ar feett-forw,ard  hlyer.  ]11 contrast to
the winucr-take all scheme in the. Kohonen  network,
Gaussian activation functions slimulate  several neurons at the
same time and the output  of the nclwork  is a weighted sum
of these activations.

For security assessment, the combination of an unsupervised
step for opcrat  ing space reduction and a supervised step for
operating state classification has been applied by several
researchers including [Srrbajic and Pao, 1990; E1-Sh,arkawi  el
al., 1991; Ranawectn  and Karatly,  1994]

Another example in power systems, where supervised and
trnsupcrvisctt  networks arc employed for data clustering and
estimation is the area of load forecasting [Hsu and Yang
199 1]. A Kohoncu network separates the forecasting thta into
representative classes like summer, winter, autumn and
spring and further into weekdays and  holidays (see also
[Macabrcy et (J1. 1991]. For each class of Ma a supervised
network is then used for load prediction for the classes dam
points.  For a similar purpose Ranaweera e[ al. [199S] apply
the RBF network in the area of load forecasting. Further

detailed examples will be discussed in the other tutorial
chapters.

8. SUMMARY

We have presented an overview over different types of neural
units characterized by their input, output, weight vector, gain
function, architecture, processing and learning rttgorithm,

Tables II-V give a short overview on the different characteris-
tics of neutzd  networks and anon-exhaustive list of examples.

TAB LE II

Neural  ne t p a r a m e t e r s

Input vector x Number of neurons
Output vector y Gain function g(h)
Weight vector w Learning rate q(t)

TABLE 111

Architecture

Layered
Fully connected
Lateral connections
}Iybrid networks

Examples

Multi-layer perception
Hopfield
Kohonen
Radial Basis Functions net
Counter-Propagation net
Boltzmann  machine

TABLE IV

P r o c e s s i n g Examples
(x, w given, calculate y)

~

TABLE V

Training
(x given,  ca lcula te  w)

Supervised learning
(y given)
Unsupervised learning
(no y given)

Examples

Delta rule
Back-propagation
Principal Component Analysis
Self -organi7.ation
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